1. Wu, L, Liu, H.-Y.*, Liang, B.-Y., Zhu, X.-R., Cao, J., Wang, Q.-M., Jiang, L.-B., Cressey, E.L., Quime, T.A., 2021. A process-based model reveals the restoration gap of degraded grasslands in Inner Mongolian steppe. Science of the Total Environment, doi:10.1016/j.scitotenv.2021.151324
2. Shi, L., Liu, H.-Y.*, Xu, C.-Y., Liang, B.-Y., Cao, J., Cressey, E.L., Quine, T.A., Zhou, M., Zhao, P.-W., 2021. Decoupled heatwave-tree growth in large forest patches of Larix sibirica in northern Mongolian Plateau. Agricultural and Forest Meteorology, 311: 108667
3. Xu, C.-Y., Liu, H.-Y.*, 2021. Hydraulic adaptability promotes tree life spans under climate dryness. Global Ecology and Biogeography, 31: 51-61
4. Peng, Z.-Y., Liu, H.-Y.*, Jiang, L.-B., Liu, X., Dai, J.-Y., Xu, C.-Y., Chen, Z.-T., Wu. L., Liu, F., Liang, B.-Y., 2021. Effect paths of environmental factors and community attributes on aboveground net primary productivity of a temperate grassland. Land Degradation and Development, 32: 3823-3832.
5. Jiang, L.-B., Liu, H.-Y. *, Peng, Z.-Y., Dai, J.-Y., Zhao, F.,-J., Chen, Z.-T., 2021. Root system plays an important role in responses of plant to drought in the steppe of China. Land Degradation and Development, 32: 3498-3506
6. Liu, X., Feng, S.-W., Liu, H.-Y*, Jue, J., 2021. Patterns and determinants of woody encroachment in the eastern Eurasian steppe. Land Degradation and Development, 32: 3536-3549
7. Cheng, Y., Liu, H.-Y. *, Wang, H.-Y., Chen, D.-L., Ciais, P., Luo, Y., Wu, X-C., Yin, Y.. 2021. Indication of paleoecological evidence on the evolution of alpine vegetation productivity and soil erosion in central China since the mid-Holocene. Science China Earth Sciences, 64, doi: 10.1007/s11430-020-9757-1
8. Wang, L., Liu, H.-Y. *, Leavitt, S., Cressey, E.L., Quine, T.A., Shi, J.-F., Shi, S.-Y., 2021. Tree-ring δ18O identifies similarity in timing but differences in depth of soil water uptake by trees in mesic and arid climates. Agricultural and Forest Meteorology, 308-309: 108569
9. Cao, J., Liu, H.-Y. *, Zhao, B., Li, Z.-S., Liang, B.-Y., Shi, L., Wu, L., Cressey, E.L., Quine, T.A., 2021. High forest stand density exacerbates growth decline of conifers driven by warming but not broad-leaved trees in temperate mixed forest in northeast Asia. Science of the Total Environment, 795: 148875
10. Hao, Q., Yang, S.-L., Song, Z.-L.*, Ran, X.-B., Yu, C.-X., Chen, C.-M., van Zwieten, L., Quine, T.A., Liu, H.-Y., Wang, Z.-G., Wang, H.-L., 2021. Holocene carbon accumulation in lakes of the current east Asian monsoonal margin: Implications under a changing climate. Science of the Total Environment, 737: 138723
11. Liu, F., Liu, H.-Y. *, Xu, C.-Y., Shi, L., Zhu, X.-R., Qi, Y., He, W.-Q., 2021. Old-growth forests show low canopy resilience to droughts at the southern edge of the taiga. Global Change Biology, 27: 2392-2402
12. Liu, H.-Y. *, 2021. Carbon–Water Relationships of the Forest Ecosystem under a Changing Climate. Forests, 12: 563.
13. Chen, Z.-T., Liu, H.-Y. *, Xu, C.-Y., Wu, X.-C., Liang, B.-Y., Cao, J., Chen, D.-L., 2021. Modeling vegetation greenness and its climate sensitivity with deep-learning technology. Ecology and Evolution, doi: 10.1002/ece3.7564
14. Liang, B.-Y., Quine, T.A., Liu, H.-Y. *, Cressey, E.L., Bateman, I., 2021. How can we realize sustainable development goals in rocky desertified regions by enhancing crop yield with reduction of environmental risks? Remote Sensing, 13: 1614
15. Zhu, C.-Y., Wang, H.-Y.*, Li, S., Luo, Y., Xue, T.Y., Song, Y.Q., Qiu, A.A., Liu, H.-Y., 2021. Mineral magnetism variables as potential indicators of permafrost aggradation and degradation at the southern edge of the permafrost zone, Northeast China. Boreas, doi:10.1111/bor.12496
16. Liu, F., Liu, H.-Y. *, Xu, C.-Y., Zhu, X.-R., He, W.-Q., Qi, Y., 2021. Remotely sensed birch forest resilience against climate change in the northern China forest-steppe ecotone. Ecological Indicators, 125: 107526
17. Peng, J.,* Jiang, H., Liu, Q.-H., Green, S.M., Quine, T.A., Liu, H.-Y., Qiu, S.-J., Liu, Y.-X., Meersmans, J., 2021. Human activity vs. climate change: Distinguishing dominant drivers on LAI dynamics in karst region of southwest China. Science of the Total Environment, 769: 146297
18. Zhu, X.-R., Liu, H.-Y. *, Li, Y.-Y., Liang, B.-Y., 2021. Quantifying the role of soil in local precipitation redistribution to vegetation growth. Ecological Indicators, 124: 107355
19. Li, Y.-Y., Liu, H.-Y. *, Zhu, X.-R., Yue, Y.-Y., Xue, J.-X., Shi, L., 2021. How permafrost degradation threatens boreal forest growth on its southern margin? Science of the Total Environment, 762: 143-154
2. Zhu, C.-Y., Liu, H.-Y.*, Wang, H.-Y., Feng, S.-W., Han, Y. 2020. Vegetation change at the southern boreal forest margin in Northeast China over the last millennium: The role of permafrost dynamics.Palaeogeography, Palaeoclimatology, Palaeoecology, 558: 109959.
3. Cheng, Y., Liu, H.-Y.*, Wang, H.-Y., Hao, Q., Han, Y., Duan, K.-Q., Dong, Z.-B. 2020. Climate-Driven Holocene Migration of Forest-Steppe Ecotone in the Tien Mountains.Forests, 2020, 11: 1139.
5. Han, Y., Liu, H.-Y.*, Zhou, L.-Y., Hao, Q., Cheng, Y. 2020. Postglacial evolution of forest and grassland in southeastern Gobi (Northern China).Quaternary Science Reviews, 248: 106611.
6. Cheng, Y., Liu, H.-Y.*, Dong, Z.-B., Duan, K.-Q., Wang, H.-Y., Han, Y. 2020. East Asian summer monsoon and topography co-determine the Holocene migration of forest-steppe ecotone in northern China.Global and Planetary Change, 187: 103135.
7. Dai, J., Liu, H.-Y.*, Xu, C.-Y., Qi, Y., Zhu, X.-R., Zhou, M., Liu, B.-B., Wu, Y.-H., 2020. Divergent hydraulic strategies explain the interspecific associations of co-occurring trees in forest–steppe ecotone.Forests, 11: 942.
8. He, W.-Q., Liu, H.-Y.*, Qi, Y., Liu, F., Zhu, X.-R., 2020. Patterns in nonstructural carbohydrate contents at the tree organ level in response to drought duration. Global Change Biology, 26: 3627-3638.
9. Liu, H.-Y.*, Peng, J., 2020. Determinants of ecosystem processes and services in the karst critical zone in south-west China. Progress in Physical Geography, DOI: 10.1177/0309133320977783
10. Zhu, X.-R., Liu, H.-Y.*, Wu, L., Liang, B.-Y., Liu, F., He, W.-Q., 2020. Impact of bedrock geochemistry on vegetation productivity depends on climate dryness in the Guizhou karst of China. Progress in Physical Geography, DOI: 10.1177/0309133320936085
11. Liang, B.-Y., Liu, H.-Y., Quine, T.A., Chen, X.-Q., Hallett, P.D., Cressey, E.L., Zhu, X.-R., Cao, J., Yang, S.-H., Wu, L., Hartley, I.P., 2020. Analysing and simulating spatial patterns of crop yield in Guizhou Province based on artificial neural networks. Progress in Physical Geography, DOI: 10.1177/0309133320956631
12. Feng, S.-W., Wu, L., Liang, B.-Y., Wang, H.-Y., Liu, H.-Y.*, Zhu, C.-Y., Li, S., 2020. Forestation does not necessarily reduce soil erosion in a karst watershed in southwestern China. Progress in Physical Geography, DOI: 10.1177/0309133320958613
13. Liu, H.-Y.*, Dai, J.-Y., Xu, C.-Y., Peng, J., Wu, X.-C., 2020. Bedrock-associated belowground and aboveground interactions and their implications for vegetation restoration in the karst critical zone of subtropical Southwest China. Progress in Physical Geography, DOI: 10.1177/0309133320949865
14. Qiu, S.-J., Peng, J.*, Dong, J.-Q., Wang, X.-Y., Ding, Z.-H., Zhang, H.-B., Mao, Q., Liu, H.-Y., Quine, T.A., 2020. Understanding the relationships between ecosystem services and associated social-ecological drivers in a karst region: A case study of Guizhou Province, China. Progress in Physical Geography, DOI: 10.1177/0309133320933525
15. Shi, L., Li, G.-X., Liu, H.-Y.,*, Dech, J.P., Zhou, M., Zhao, P.-W., Ren, Z., 2020. Dendrochronological Reconstruction of June Drought (PDSI) from 1731–2016 for the Western Mongolian Plateau. Atmosphere, 11: 839
16. Hao, Q., Yang, S.-L., Song, Z.-L.*, Ran, X.-B., Yu, C.-X., Chen, C.-M., Van Zwieten, L., Quine, T.A., Liu, H.-Y., Wang, Z.-G., Wang, H.-L., 2020. Holocene carbon accumulation in lakes of the current east Asian monsoonal margin: Implications under a changing climate. Science of the Total Environment, 737: 139-423
17. Anenkhonov, O.A.*, Sandanov, D.V., Liu, H.-Y., Korolyuk,A. Yu., Xu, C.-Y., Guo, W.-C., Zverev, A.A., Naidanov, B.B., Chimitov, D.G., 2020. Using Data on the Thermal Conditions of Soils for the Differentiation of Vegetation in the Exposure-Related Forest Steppe of Transbaikalia. Contemporary Problems of Ecology, 13(5): 522–532
18. Peng, J.*, Tian, L., Zhang, Z.-M., Zhao, Y., Green, S.M., Quine, T.A., Liu, H.-Y., Meersmans, J., 2020. Distinguishing the impacts of land use and climate change on ecosystem services in a karst landscape in China. Ecosystem Services, 46: 101199
19. Liang, B.-Y., Liu, H.-Y.*, Chen, X.-Q., Zhu, X.-R., Cressey, E.L., Quine, T.A., 2020. Periodic Relations between Terrestrial Vegetation and Climate Factors across the Globe. Remote Sensing, 12:1805
20. Yue, Y.Y., Liu, H.-Y.*, Xue, J.X., Li, Y.Y., Guo, W.-C., 2020. Ecological indicators of near-surface permafrost habitat at the southern margin of the boreal forest in China. Ecological Indicator, 108: 105714
21. Xu, K.-X., Su, Y.-J., Liu J., Hu, T.-Y., Jin, S.-C., Ma, Q., Zhai, Q.-P., Wang, R., Zhang, J., Li, Y.-M., Liu, H.-Y., Guo, Q.-H.*, 2020. Estimation of degraded grassland aboveground biomass using machine learning methods from terrestrial laser scanning data. Ecological Indicators, 108: 105747
2. Hao, Q., Liu, H.-Y.*, Yang, S.-L., Yang, W.-H., Song, Z.-L.*., 2020. Differentiated roles of mean climate and climate stability on post-glacial birch distributions in northern China. Holocene, 29(11): 1758-1766
3. Roger, P.-C.*, Brandley, P.D., Sebesta, J., Albrechtsen, B.R., Li, Q.-Q., Ivanova, N., Kusbach, A., Kuuluvainen, T., Landhaeuser, S.M., Liu, H.-Y., Myking, T., Pulkkinen, P., Wen, Z., Kulkowski, D., 2020. A global view of aspen: Conservation science for widespread keystone systems. Global Ecology and Conservation, 21, e00828
4. Jiang, P., Liu, H.-Y.*, Piao, S.-L., Ciais, P., Wu X.-C., Yin, Y., Wang, H., 2019. Enhanced growth after extreme wetness compensates for post-drought carbon loss in dry forests. Nature Communications, 10:195
5. Guo, Y.-P., Schöb, C., Ma, W.-H., Mohammat, A., Liu, H.-Y., Yu, S.-L., Jiang, Y.-X., Schmid, B., Tang, Z.-Y.*, 2019. Increasing water availability and facilitation weaken biodiversity–biomass relationships in shrublands. Ecology, e02624
6. Liu, H.-Y.*, Jiang, Z.-H., Dai, J.-Y., Wu, X.-C., Peng, J., Wang, H.-Y., Meersmans, J., Green, S.M., Quine, T.A., 2019. Rock crevices determine woody and herbaceous plant cover in the karst critical zone. Science China Earth Sciences, 62: doi: 10.1007/s11430-018-9328-3
7. Liu, H.-Y.*, Shangguan, H.-L., Zhou, M., Airebule, P., Zhao, P.-W., He, W.-Q., Xiang, C.-L., Wu, X.-C., 2019. Differentiated responses of nonstructural carbohydrate allocation to climatic dryness and drought events in the Inner Asian arid timberline. Agricultural and Forest Meteorology, 271: 355-361
8. Liu, H.-Y., Leng, S.-Y.*, He, C.-F., Peng, J., Wang, X.-J., 2019. China’s road towards sustainable development: Geography bridges science and solution. Progress in Physical Geography, doi: 10.1177/0309133319851026
9. Cao, J., Liu, H.-Y., Zhao, B., Li, Z.-S., Drew, D.M., Zhao, X.-H.*, 2019. Species-specific and elevation-differentiated responses of tree growth to rapid warming in a mixed forest lead to a continuous growth enhancement in semi-humid Northeast Asia. Forest Ecology and Management, 448: 76-84
10. Liu H.-Y., 2019. It is difficult for China’s greening through large-scale afforestation to cross the Hu Line. Science China Earth Sciences, 62: doi: 10.1007/s11430-019-9381-3
11. Shi, L., Dech, J.P., Liu, H.-Y., Zhao, P.-W., Bayin, D., Zhou, M.*, 2019. Post-fire vegetation recovery at forest sites is affected by permafrost degradation in the Da Xing'an Mountains of northern China. Journal of Vegetation Science, 30: 940-949
12. Wang, H.-Y.*, Cheng, Y., Luo, Y., Zhang, C.-N., Deng, L., Yang, X.-Y., Liu, H.-Y., 2019. Variations in erosion intensity and soil maturity as revealed by mineral magnetism of sediments from an alpine lake in monsoon-dominated central east China and their implications for environmental changes over the past 5500 years. The Holocene, doi: 10.1177/095968361986558
13. Green, S.M., Dungaita, J.A.J., Tu, C.-L., Buss, H.L., Sanderson, N., Kawkese, S.J., Xing, K.-X., Yue, F.-J., Hussey, V.L., Peng, J., Johnes, P., Barrowsa, T., Hartley, I.P., Song, X.-W., Jiang, Z.-H., Meersmans, J., Zhang, X.-Y., Tian, J., Wu, X.-C., Liu, H.-Y., Song, Z.-L., Evershed, R., Gao, Y., Quine, T.A.*, 2019. Soil functions and ecosystem services research in the Chinese karst Critical Zone. Chemical Geology, doi: 10.1016/j.chemgeo.2019.03.018
14. Ji, Z.M., Yang, X., Song, Z.-L.*, Liu, H.-Y., Liu, X., Qiu, S., Li, J., Guo, F., Wu, Y., Zhang, X., 2018. Silicon distribution in meadow steppe and typical steppe of northern China and its implications for phytolith carbon sequestration. Grass and Forage Science, 73:482–492
15. Wu, X.-C., Li, X.-Y., Liu, H.-Y.*, Ciais, P., Li, Y.-Q., Xu, C.-Y., Babst, F., Guo, W., Hao, B., Wang, P., Huang, Y.-M., Liu, S.-M., Tian, Y.-H., He, B., Zhang, C.-C., 2019. Uneven winter snow influence on tree growth across temperate China. Global Change Biology, 25: 144-154
2018
1. Guo, W.-C., Liu, H.-Y.*, Wu, X.-C., 2018. Vegetation greening despite weakening coupling between vegetation growth and temperature over the boreal region. Geophysical Research Letters, 123(8), 2376-2387
2. Zeng, W.-J., Chen, J.-B., Liu, H.-Y., Wang, W.*, 2018. Soil respiration and its autotrophic and heterotrophic components in response to nitrogen addition among different degraded temperate grasslands. Soil Biology and Biochemistry, 124: 255-265
3. Shi, F.-Z., Wu, X-C.*, Li, X.-Y.*, Chen, D.-L., Liu, H.-Y., Liu, S.-M., Hu, X., He, B., Shi, C.-M., Wang P., Mao, R., Ma, Y.-J., Huang, Y.-M., 2018. Weakening relationship between vegetation growth over the Tibetan Plateau and large-scale climate variability. Journal of Geophysical Research: Biogeosciences, 123, 004134
4. Jiang, Z.-H., Ma, K.-M., Liu, H.-Y., Tang, Z.-Y., 2018. A trait-based approach reveals the importance of biotic filter for elevational herb richness pattern. Journal of Biogeography, 45: 2288-2298
5. Cheng, Y., Liu, H.-Y.*, Wang, H.-Y., Hao, Q., 2018. Differentiated climate-driven Holocene biome migration in western and eastern China as mediated by topography. Earth Science Reviews, 182: 174-185
6. Hu, G.-Z., Liu, H.-Y.*, Shangguang, H.-L., Wu, X.-C., Xu, X.-T., Williams, M., 2018. The role of heartwood water storage for semi-arid trees under drought. Agricultural and Forest Meteorology, 256-257: 534-541
7. Erdős, L., Ambarlı, D., Anenkhonov, O.A., Bátori, Z., Cserhalmi, D., Kröel-Dulay, G., Liu, H.-Y., Magnes, M., Molnár, Z., Naqinezhad, A., Semenishchenkov, Y.A., Tölgyesi, C., Török, P. 2018. The edge of two worlds: A new review and synthesis on Eurasian forest-steppes. Applied Vegetation Science, 21: 345-362
8. Xu, X.-T., Liu, H.-Y.*, Wang, W., Song, Z.-L., 2018. Patterns and determinants of the response of plant biomass to addition of nitrogen in semi-arid and alpine grasslands of China. Journal of Arid Environments, 153: 11-17
9. Guo, W.-C., Liu, H.-Y.*, Anenkhonov, O.A., Shangguan , H.-L., Sandanov, D.V., Korolyuk, A., Yu, Hu, G.-Z., Wu, X.-C. Vegetation can strongly regulate permafrost degradation at its southern edge through changing surface freeze-thaw processes. Agricultural and Forest Meteorology, 23: 10-17
10. Ru, N., Yang, X.-M., Song, Z.-L.*, Liu, H.-Y., Hao, Q., Liu, X., Wu, X.-C., 2018. Phytoliths and phytolith carbon occlusion in aboveground vegetation of sandy grasslands in eastern Inner Mongolia, China. Science of the Total Environment, 625, 1283-1289
11. Wu, X.-C.*, Liu, H.-Y., Li, X.-Y., Liang, E.-Y., Beck, P.S.A., Huang, Y.-M., Seasonal divergence in the interannual responses of Northern Hemisphere vegetation activity to variations in diurnal climate. Scientific Reports, 6:19000
12. Xu, C.-Y., Liu, H.-Y.*, Zhou, M., Xue, J.-X., Zhao, P.-W., Shi, L., Shangguan, H.-L., 2018. Enhanced sprout-regeneration offsets warming-induced forest mortality through shortening the generation time in semiarid birch forest. Forest Ecology and Management, 409: 298-306
13. Hao, Q., de Lafontaine, G., Guo, D.-S., Gu, H.-Y., Hu, F.-S., Han, Y., Song, Z.-L., Liu, H.-Y.*, 2018. The critical role of local refugia in postglacial colonization of Chinese pine: joint inferences from DNA analyses, pollen records, and species distribution modeling. Ecography, 41: 592-606
14. Cheng, Y., Liu, H.-Y.*, Wang, H.-Y.*, Piao, S.-L., Yin, Y., Ciais, P., Wu, X.-C., Luo, Y., Zhang, C.-N., Song, Y.-Q., Gao, Y.-S., Qiu, A.-A., 2017. Contrasting effects of winter and summer climate on alpine timberline evolution in monsoon-dominated East Asia. Quaternary Science Reviews, 169, 278-287
2017
1. Han, Y., Liu, H.-Y.*, Hao, Q., Liu, X., Guo, W.-C., Shangguan H.-L., 2017. More reliable pollen productivity estimates and relative source area of pollen in a forest-steppe ecotone with improved vegetation survey. The Holocene, 27(10): 1567-1577
2. Liu, X., Liu, H.-Y.*, Qiu, S., Wu, X.-C., Tian, Y.-H., Hao, Q., 2017. An improved estimation of regional fractional woody/herbaceous cover using combined satellite data and high-quality training samples. Remote Sensing, 9, 32
3. Pan, W.-J., Song, Z.-L.*, Liu, H.-Y.*, van Zwieten, L., Li, Y.-T., Yang, X.-M., Han, Y., Liu, X., Zhang, X.-D., Xu, Z.-J., Wang, H.-L., 2017. The accumulation of phytolith-occluded carbon in soils of different grasslands. Journal of Soils and Sediments, 17: 2420-2427
4. Wu, X.-C.*, Liu, H.-Y., Li, X.-Y.*, Ciais, P., Babst, F., Guo, W.-C., Zhang, C.-C., Magliulo, V., Pavelka, M., Liu, S.-M., Huang, Y.-M., Wang, P., Shi, C.-M., Ma, Y.-J., 2018. Differentiating drought legacy effects on vegetation growth over the temperate Northern Hemisphere. Global Change Biology,24(1): 504-516
5. Wu, X.-C., Liu, H.-Y., Li, X.-Y.*, Piao, S.-L., Ciais, P., Guo, W.-C., Yin, Y., Poulter, B., Peng, C.-H., Viovy, N., Vuichard, N., Wang, P., Huang, Y.-M., 2017. Higher temperature variability reduces temperature sensitivity of vegetation growth in Northern Hemisphere. Geophysical Research Letters, 44: 6174-6181
6. Wu, X.-C., Liu, H.-Y., Li, X.-Y.*, Tian, Y.-H., Mahecha, M.D., 2017. Responses of winter wheat yields to warming-mediated vernalization variations across temperate Europe. Frontiers in Ecology and Evolution, 5:126
7. Lashchinskiy, N.*, Korolyuk, A., Makunina, N., Anenkhonov, O., Liu, H.-Y., 2017. Longitudinal changes in species composition of forests and grasslands across the North Asian forest steppe zone. Folia Geobotanica, 52:175–197
8. Xu, C.-Y., Liu, H.-Y.*, Anenkhonov, O.A., Korolyuk, A.Y, Sandanov, D.V., Balsanova, L.D., Naidanov, B.B., Wu, X.-C., 2017. Long-term forest resilience to climate change indicated by mortality, regeneration and growth in semi-arid southern Siberia. Global Change Biology, 23(6):2370-2382
2016
1. Wang, H.-Y.*, Song, Y.-Q., Cheng Y., Luo, Y., Zhang, C.-N., Gao, Y.-S., Qiu, A.-A., Deng, L., Liu, H.-Y., 2016. Mineral magnetism and other characteristics of sediments from a sub-alpine lake (3080m a.s.l.) in central east China and their implications on environmental changes for the last 5770 years. Earth and Planetary Science Letters, 452: 44-59
2. Jiang, P., Liu, H.-Y.*, Wu, X.-C., Wang, H.-Y., 2016. Tree-ring-based SPEI reconstruction in central Tianshan Mountains of China since AD 1820 and links to westerly circulation. Journal of Climatology, doi: 10.1002/joc4884
3. Xu, C.-Y., Liu, H.-Y.*, Williams, A.P., Yin, Y., Wu, X.-C., 2016. Trends toward an earlier peak of the growing season in Northern Hemisphere mid-latitudes. Global Change Biology, 22: 2852-2860
4. Xu, Y., Shen, Z.-H.*, Ying, L.-X., Ciais, P., Liu, H.-Y., Piao, S.-L., Wen, C., Kiang, Y.-X., 2016. The exposure, sensitivity and vulnerability of natural vegetation in China to climate thermal variability (1901-2013): An indicator-based approach. Ecological Indicators, 63: 258-272
5. Yang, X., Chi, X.-L., Ji, C.-J., Liu, H.-Y., Ma, W.-H., Mohhammat, A., Shi,, Z., 2016. Variations of leaf N and P concentrations in shrubland biomes across northern China: phylogeny, climate, and soil. Biogeoscience, 13: 1-10
7. Qiu, S., Liu, H.-Y.*, Zhao, F.-J., Liu, X., 2016. Inconsistent changes of biomass and species richness along a precipitation gradient in temperate steppe. Journal of Arid Environments, 132: 42-48
8. Feng, M.-M., Wang, Q.-Y., Hao, Q., Yin, Y., Song, Z.-L., Wang, H.-Y., Liu, H.-Y.*, 2016. Determinants of soil erosion during the last 1600 years in the forest–steppe ecotone in Northern China reconstructed from lacustrine sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 449: 79-84
9. Hao, Q., Liu, H.-Y.*, Liu, X., 2016. Pollen-detected altitudinal migration of forests during the Holocene in the mountainous forest–steppe ecotone in northern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 446: 70–77
10. Yin, Y., Liu, H.-Y.*, Hao, Q., 2016. The role of fire in the late Holocene forest decline in semi-arid North China. The Holocene, 26(1): 93-101
11. Wu, X.-C.*, Liu, H.-Y., Li, X.-Y., Liang, E.-Y., Beck, P.S.A., Huang,Y.-M., 2016. Seasonal divergence in the interannual responses of Northern Hemisphere vegetation activity to variations in diurnal climate. Scientific Reports, 6:19000
2015
1. Xu, X.-T., Liu, H.-Y.*, Song, Z.-L., Wang, W., Hu, G.-Z., Qi, Z.-H., 2015. Response of aboveground biomass and diversity to nitrogen addition along a degradation gradient in the Inner Mongolian steppe, China. Scientific Reports, 5:10284
2. Yang, X.-M., Song, Z.-L., Liu, H.-Y., Bolan, N.S.,Wang, H.-L., Li, Z.-M., 2015. Plant silicon content in forests of north China and its implications for phytolith carbon sequestration. Ecological Research, 30: 347-355
3. Hu, G.-Z., Liu, H.-Y.*, Yin, Y., Song, Z.-L., 2015. The role of legumes in plant community succession of degraded grasslands in northern China. Land Degradation & Development, 27: 366-372
4. Anenkhonova, O.A., Korolyukb, A. Yu, Sandanov, D.V., Liu, H.-Y., Zverev, A.A., Guo, D.-L., 2015. Soil-moisture conditions indicated by field-layer plants help identifyvulnerable forests in the forest-steppe of semi-arid Southern Siberia. Ecological Indicators, 57: 196-207
5. Liu, H.-Y.*, Brueheide, H., Elward, J., Chytrý, M., 2015. Temperate forests in continental East Asia. Applied Vegetation Science, 18: 3–4
6. Liu, H.-Y.*, Yin, Y., Wang, Q., He, S., 2015. Climatic effects on plant species distribution within the forest steppe ecotone in northern China. Applied Vegetation Science, 18: 43–49
7. Qi, Z.-H., Liu, H.-Y.*, Wu, X.-C., Hao, Q., 2015. Climate-driven speedup of alpine treeline forest growth in the Tianshan Mountains, Northwestern China. Global Change Biology, 21: 816-826
2014
1. Liu, H.-Y.*, Yin, Y., Hao, Q., Liu, G., 2014. Sensitivity of temperate vegetation to Holocene development of East Asian monsoon. Quaternary Science Reviews, 98: 126-134
2. Hao, Q., Liu, H.-Y.*, Yin, Y., Wang, H.-Y., Feng, M.-M., 2014. Varied responses of forest at its distribution margin to Holocene monsoon development in northern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 409: 239-248
3. Yang, X., Tang, Z.-Y.*, Ji, C.-J., Liu, H.-Y., Ma, W.-H., Mohhamot, A., Shi, Z.-Y., Sun, W., Wang, T., Wang, X.-P., Wu, X., Yu, S.-L., Yue, M., Zheng, C.-Y., 2014. Scaling of nitrogen and phosphorus across plant organs in shrubland biomes across Northern China. Scientific Reports, 4: 5448, DOI: 10.1038/srep05448
4. Song, Z.-L.*, Liu, H.-Y.*, Zhao, F.-J., Xu, C.-Y., 2014. Ecological stoichiometry of N:P:Si in China’s grasslands. Plant and Soil, 380: 165-179
5. Wu, X.-C., Liu, H.-Y.*, He, L.-B., Qi, Z.-H., Anenkhonov, O. A., Korolyuk, A. Yu., Yu, Y., Guo, D.-L., 2014. Stand-total tree-ring measurements and forest inventory documented climate-induced forest dynamics in the semi-arid Altai Mountains. Ecological Indicators, 34: 231-241
6. Liu, H.-Y.*, Yin, Y.*, Piao, S.-L., Zhao, F.-J., Engels, M., Ciais, P., 2013. Disappearing lakes in semiarid northernChina: drivers and environmental impact. Environmental Science and Technology, 47: 12107-12114
2013
1. Liu, G., Yin, Y., Liu, H.-Y.*, Hao, Q., 2013. Quantifying regional vegetation cover variability in North China during the Holocene: implications for climate feedback. PLoS ONE, 8: e71681,
2. Song, Z.-L.*, Liu, H.-Y.*, Li, B.-B., Yang, X.-M., 2013. The production of phytolith-occluded carbon in China’s forests: implications to biogeochemical carbon sequestration. Global Change Biology, 19: 2907-2915
4. Liu, H.-Y.*, Yin, Y., 2013. Response of forest distribution to past climate change: An insight into future predictions. Chinese Science Bulletin, 58: 4426-4436
5. Liu, H.-Y.*, Liu, K., Wei, F.-L., 2013. Aretemisia pollen-indicated steppe distribution in southern China during the Last Glacial Maximum. Journal of Palaeogeography, 2: 297-305
6. Liu, H.-Y.*, Piao, S.-L., 2013. Drought threatened semi-arid ecosystems in the Inner Asia. Agricultural and Forestry Meteorology, 178-179: 1-2
7. Liu, G, Liu, H.-Y.*, Yin, Y., 2013. Global patterns of NDVI-indicated vegetation extremes and their sensitivity to climate extremes. Environmental Research Letters, 8: 025009
8. Wu, X.-C., Liu, H.-Y.*, Wang, Y.-F., Deng, M.-H., 2013. Prolonged limitation of tree growth due to warmer spring in semi-arid mountain forests of Tianshan, northwest China. Environmental Research Letters, 8: 024016
9. Hu, G.-Z., Liu, H.-Y.*, Anenkhonov, O., Korolyuk, A., Sandanov, D., Guo, D.-L.,2013. Forest buffers soil temperature and postpones soil thaw as indicated by a three-year large-scale soil temperature monitoring in the forest-steppe ecotone in Inner Asia. Global and Planetary Change, 104: 1-6
10. Poulter, B*, Pedersen, N, Liu, H.-Y., Zhu, Z.-C., D’Arrigo R., Ciais, P., Davi, N., Frank, D., Myneni, R., Piao, S.-L., Wang, T. 2013. Recent trends in Inner Asian forest dynamics to temperature and precipitation indicate high sensitivity to climate change. Agriculture and Forest Meteorology, 178-179: 31-45
11. Yin, Y., Liu, H.-Y.*, Liu, G., Hao, Q., Wang, H.-Y., 2013. Vegetation responses to mid-Holocene extreme drought events and subsequent long-term drought on the southeastern Inner Mongolian Plateau, China. Agricultural and Forestry Meteorology, 178-179: 3-9
12. Wu X.-C., Liu, H.-Y.*, 2013. Consistent shifts in spring vegetation green-up date across temperate biomes inChina, 1982–2006. Global Change Biology, 19: 870-880
2012
1. Wu, X.-C., Liu, H.-Y.*, Guo, D.-L., Anenkhonov, O., Badmaeva, N., Sandanov, D., 2012. Growth Decline Linked to Warming-Induced Water Limitation in Hemi-Boreal Forests. PLoS ONE, 7(8): e42619. doi:10.1371/journal. pone.004261
2. Song, Z.-L.*, Liu, H.-Y., Si, Y., Yin, Y., 2012. The Production of Phytoliths in China's Grasslands: Implications to the Biogeochemical Sequestration of Atmospheric CO2. Global Change Biology, 18: 3647-3653
3. Liu, H.-Y.*, He, S.-Y., Anenkhonov, O, Hu, G.-Z., Sandanov, D., Badmaeva, N., 2012. Topography-controlled soil water content and the coexistence of forest and steppe in northern china. Physical Geography, 33: 561-573
4. Zhao, Y.*, Liu, H.-Y., Li, F.-R., Huang, X.-Z., Sun, J.-H., Zhao, W.-W., Herzschuh, U., Tang, Y., 2012. Application and limitations of the Artemisia/Chenopodiaceae pollen ratio in arid and semi-arid China. The Holocene, 22: 1385-1392
5. Wang, H.-Y.*, Liu, H.-Y., Zhao, F.-J., Yin, Y., Zhu, J.-L., Snowball, I., 2012. Early- and mid-Holocene palaeoenvironments as revealed by mineral magnetic, geochemical and palynological data of sediments from Bai Nuur and Ulan Nuur, southeastern inner Mongolia Plateau, China. Quaternary International, 250: 100-118
6. Yin, Y., Liu, H.-Y.*, He, S.-Y., Zhao, F.-J., Zhu, J.-L., Wang, H.-Y., Liu, G., Wu, X.-C., 2011. Patterns of local and regional grain size distribution and their application to Holocene climate reconstruction in semi-arid Inner Mongolia,China. Palaeogeography, Palaeoclimatology, Palaeoecology 307: 168-176
2011 and before
1. Zhao F.-J., Liu, H.-Y.*, Yin, Y., Hu, G.Z., Wu, X.C., 2011. Vegetation succession prevents dry lake beds from becoming dust sources in the semiarid steppe region of China. Earth Surface Processes and Landforms, 36: 864-871
2. Liu, H.-Y.*, Yin, Y., Zhu, J.-L., Zhao, F.-J., Wang, H.-Y., 2010. How did forest respond to Holocene climate drying at the forest-steppe ecotone in northernChina? Quaternary International, 227: 46-52
3. Zhang, Y.-K., Liu, H.-Y.*, 2010. How did climate drying reduce ecosystem carbon storage in the forest–steppe ecotone? A case study in Inner Mongolia, China. Journal of Plant Research, 123: 543-549
4. Wang, H.-Y.*, Liu, H.-Y., Zhu, J.-L., Yin, Y., 2010. Holocene environmental changes as recorded by mineral magnetism of sediments from Anguli-nuur Lake, southeastern Inner Mongolia Plateau, China. Palaeogeography Palaeoclimatology Palaeoecology, 285(1-2): 30-49
5. Wang, H.-Y.*, Liu, H.-Y., Liu, Y.-H., Cui, H.-T., Abrahamsen, N., 2010. Mineral magnetism and other characteristics of sediments from an alpine lake (3,410 m a.s.l.) in central China and implications for late Holocene climate and environment. Journal of Paleolimnology, 43(2): 345-367
7. Li, A., Guo, D.-L.*, Wang, Z.-Q., Liu, H.-Y., 2010. Nitrogen and phosphorus allocation in leaves, twigs, and fine roots across 49 temperate, subtropical and tropical tree species: a hierarchical pattern. Functional Ecology, 24(1): 224-232
8. Piao, S.-L.*, Ciais, P., Lomas, M., Beer, C., Liu, H.-Y., Fang, J.-Y., Friedlingstein, F., Huang, Y., Muraoka, H., Son, Y., Woodward, I., 2010. Contribution of climate change and rising CO2 to terrestrial carbon balance in East Asia: A multimodel analysis. Global and Planetary Change, 75(3-4): 133-142.
9. Piao, S.-L.*, Cias, P., Huang, Y., Shen, Z.-H., Peng, S.-S., Li, J.-S., Zhou, L.-P., Liu, H.-Y., Ma, Y.-C., Ding, Y.-H., Friedlingstein, P., Liu, C.-Z., Tan, K., Yu, Y.-Q., Zhang, T.-Y., Fang, J.-Y., 2010. The impacts of climate change on water resources and agriculture inChina. Nature, 467, 43-51
10. Liu, H.-Y.*, Cui, H.-T., 2009. Patterns of plant biodiversity in the woodland-steppe ecotone in southeastern Inner Mongolia. Contemporary Problems of Ecology, 2(4): 322-329
11. Liang, E.-Y.*, Eckstein, D., Liu, H.-Y., 2009. Assessing the recent grassland greening trend in a long-term context based on tree-ring analysis: A case study in North China Ecological Indicators, 9:1280–1283
12. Wu, X.-C., Liu, H.-Y.*, Ren, J., He, S.-Y., Zhang, Y.-K., 2009.Water-dominated vegetation activity across biomes in mid-latitudinal easternChina. Geophysical Research Letters,36, L04402, doi:10.1029/2008GL036940
13. Liu, H.-Y.*, Ji, Z.-K., Tian, J., 2008. Reconstruction of former halophilous desert vegetation at the present cropland sites using soil conditions analogy. Folia Geobotanica, 43(1): 35-47
14. Liu, H.-Y.*, Wei, F.-L., Liu, K. and Zhu, J.-L., 2008. Determinants of pollen dispersal in the East Asian steppe at different spatial scales. Review of Palaeobotany and Palynology, 149(3-4): 219-228
15. Liu, H.-Y.*, Yin, Y., Ren, J., Tian, Y.-H., Wang, H.-Y., 2008. Climatic and anthropogenic controls of topsoil features in the semi-arid East Asian steppe. Geophysical Research Letters, 35(4): L04401, doi:10.1029/2007GL032980
16. Liang, E.-Y.*, Eckstein, D., Liu, H.-Y., 2008. Climate-growth relationships of relict Pinus tabulaeformis at the northern limit of its natural distribution in northernChina. Journal of Vegetation Science 19: 393-406
17. Liang, E.-Y.*, Shao, X.-M., Liu, H.-Y., Eckstein, D., 2007, Tree-ring based PDSI reconstruction since AD 1842 in the Ortindag sand land, east Inner Mongolia. Chinese Science Bulletin, 52 (19): 2715-2721
18. Ren, J., Liu, H.-Y.*, Yin, Y., He, S.-Y., 2007. Drivers of greening trend across vertically distributed biomes in temperate arid Asia. Geophysical Research Letters, 34: L07707, doi:10.1029/2007GL029435
19. Liu, H.-Y.*, Wang, Y., Tian, Y.-H., 2006. Climatic and anthropogenic controls of surface pollen in East Asian steppes. Review of Palaeobotany and Palynology, 138(3-4): 281-289
20. Xu, L.-H., Liu, H.-Y.*, Chu, X.-Z., Su, K., 2006, Desert vegetation patterns at the northern foot of Tianshan Mountains: The role of soil conditions. Flora, 206(1): 44-50
21. Piao, S.-L.*, Fang, J.-Y., Liu, H.-Y., Zhu, B., 2005. Dynamics of desertification in China over the past two decades from satellite data. Geophysical Research Letter, 32, L06402, doi:10.1029/2004 GL021764
22. Wang, H.-Y.*, Liu, H.-Y., Liu, Y.-H., Cui, H.-T., 2004. Mineral magnetism of lacustrine sediments and Holocene palaeoenvironmental changes in Dali Nor area, southeast Inner Mongolia Plateau,China. Palaeogeography, Palaeoclimatology, Palaeoecology, 208(3-4):173-190
23. Liu, H.-Y.* Xing, Q.-R., Ji, Z.-K., Xu, L.-H., Tian, Y.-H., 2003. An outline of Quaternary development of Fagus forest inChina: palynological and ecological perspectives. Flora, 198(4): 249-259
24. Liu, H.-Y.*, Tian, Y.-H., Ding, D., 2003. Contribution of different land cover types to the material source of dust stormy weather in Beijing. Chinese Science Bulletin, 48(17):1853-1856
25. Liu, H.-Y.*, Xu, L.-H., Cui, H.-T., 2002, Holocene history of desertification along the woodland-steppe border in northernChina. Quaternary Research, 57: 259-270
26. Liu, H.-Y.*, Cui, H.-T., Yu, P.-T., Huang, Y.-M., 2002, The origin of remnant forest stands of Pinus tabulaeformis in southeastern Inner Mongolia,China. Plant Ecology, 158(3): 139-151
27. Liu, H.-Y.*, Cui, H.-T., Tang, Z.-Y., Dai, J.-H., Tang, Y.-X., 2002, Larch timberline and its development in temperateChina. Mountain Research and Development, 22(4): 359-367
28. Liu, H.-Y.*, Xu, L.-H., Cui, H.-T., Chen C.-D., Xu, X.-Y., 2002, Vegetation pattern and conservation strategy of the extremely-arid desert of Anxi region, NW China. Journal of Environmental Sciences, 14(3): 380-387
29. Fang, J.-Y.*, Liu, H.-Y., Piao, S.-L., 2002,Vegetation-climate relationship and its application in vegetation regionalization inChina. Acta Botanica Sinica, 44(9): 1105-1122
30. Liu, H.-Y.*, Xu, L.-H., Tian, Y.-H., Cui, H.-T., 2002, Tempo-spatial variances of Holocene precipitation at the marginal area of the eastern Asia monsoon influences from pollen evidence. Acta Botanica Sinica, 44(7): 864-871
31. Liu, H.-Y.*, Cui, H.-T., Huang, Y.-M., 2001, Detecting Holocene movements of the woodland-steppe ecotone in northernChinausing discriminant analysis. Journal of Quaternary Science, 16(3): 237-244
32. Wang, H.-Y.*, Liu, H.-Y., Cui, H.-T., Abrahamsen, H., 2001, Terminal Pleistocene/Holocene palaeoenvironmental changes revealed by mineral-magnetism measurements of lake sediments for Dali Nor area, southeastern Inner Mongolia Plateau,China. Palaeogeography, Palaeoclimatology, Palaeoecology, 170: 115-132
33. Liu, H.-Y.*, Cui, H.-T., Pott, R., Speier, M., 2000, Vegetation of the woodland-steppe ecotone in southeastern Inner Mongolia,China. Journal of Vegetation Science, 11(4): 525-532
34. Liu, H.-Y.*, Cui, H.-T., Pott, R., Speier, M., 1999, Surface pollen of the woodland-steppe ecotone in southeastern Inner Mongolia,China. Review of Palaeobotany and Palynology, 105(3-4): 237-250
35. Cui, H.-T.*, Liu, H.-Y., Yao, X.-S., 1997, The finding of the paleo-spruce timber in the Hunshandak sandy land and its paleoecological significance. Science inChina(Series D), 40(6): 599-604